Stem Cells and Type 1 Diabetes: What the Future Has in Store

A pancreas transplant has always stood out as a possible ‘cure’ for type 1 diabetes (T1D), but one problem has been obvious: there just are not enough organ donors—on the order of 10,000 a year—while there are between 1 and 2 million people with T1D in the U.S. In a kidney transplant, a healthy donor can donate one of two functioning kidneys with a generally low risk surgery, and still have normal kidney function. A similar approach with part of the pancreas would be unsafe. In addition, pancreas transplant is generally less successful than kidney transplant, and there are higher risks of serious side effects after pancreatic transplant surgery. The math is even worse when trying to transplant insulin-producing islets, because more than one donor is needed per recipient, which has stopped islet cell transplant from taking hold outside of a few centers. Furthermore, transplants of any sort require lifelong use of powerful and expensive medications that suppress immune function and can also cause serious side effects.

But what if we could transplant insulin-producing cells made in the lab? Wouldn’t that solve the donor dilemma? Yes, but the recipient with by far the most common form of T1D would still require immune suppression. Their immune system already destroyed, and is continuing to destroy, their insulin- producing beta cells. This would be true even if the insulin producing cells were derived from their own tissue. But what if we could protect new insulin-producing cells from the recipient’s immune system another way?

It is now possible to manufacture insulin-producing cells in the lab, using multiple different techniques developed by a multitude of researchers (Type 1 Diabetes Treatments Based on Stem Cells, Arana et al., Current Diabetes Reviews, 2018, 14, 14-23). That is a huge step forward, and a tribute to the benefit of supporting basic and applied research. Researchers are working on ways to ‘hide’ the new cells from the recipient’s immune system by altering the cells immune ‘appearance’, or more selectively suppressing the immune attack by the host. Hopefully those efforts will pay off some day. But how about putting the new cells behind a barrier that the immune system cannot get through?

ViaCyte, a privately-held bioresearch company, reported some intriguing results at this year’s American Diabetes Association Scientific Sessions: the two-year data from the ongoing Safety, Tolerability, and Efficacy of PEC-Encap™ Product Candidate in Type One Diabetes (STEP ONE) clinical trial ( ). The PEC-Encap consists of stem cell-derived cells that can develop into insulin-producing cells, encapsulated in a delivery device that is surgically implanted under the skin, called the Encaptra® Cell Delivery System. This system is designed to block immune access to the new cells but allow insulin, glucagon, glucose and other nutrients to pass through the membrane. The results indicate that the PEC-Encap product did not trigger a specific immune response against the new cells or the device itself, and it appeared to be safe. That’s the good news. Unfortunately, few of the implanted devices allowed enough new blood vessel growth from the host to sufficiently nourish the new cells, so in most cases, the new insulin-producing cells did not last. This appeared to result primarily from a foreign body reaction, a non-specific response of the recipient’s immune system that is similar to what one might find develop around a splinter. ViaCyte is now working on modifying the system to improve the potential for long-term survival of the manufactured insulin-producing cells.

If these or other similar efforts are successful, a large percent of those with T1D could ultimately receive a functional ‘cure’. In addition, those with long-term type 2 diabetes (T2D) who can no longer produce much insulin, a common state that makes blood sugar management very difficult, might also benefit from this promising new therapy.

A second, perhaps less ambitious device is also under development, PEC-Direct™, one which would still require the use of immunosuppression medication. However, since the cells can be generated in a lab in potentially unlimited numbers, there is no need for organ donors. Thus, a much larger group of people might be able to benefit from transplanted insulin-producing cells, albeit with the need for immunosuppression. The current plan is to consider such a transplant for those with T1D who suffer from recurrent severe hypoglycemia episodes or have hypoglycemia unawareness, conditions which are life-threatening. Those who are unable to manage T1D effectively due to highly variable blood glucose levels, so called ‘brittle’ diabetes, could also benefit. Together, such groups are thought to represent about 10% of all people with T1D.

In summary, there is great news in the stem cell arena; insulin-producing cells can be made in unlimited numbers. While not yet ready for clinical use in people with diabetes, rapid progress is being made. We waited for fingersticks to become available, so we could finally see what we so desperately needed to see- where is my blood glucose, right now. We waited for insulin pumps and better insulins, so we could do what we so desperately needed to do, right now – tame T1D’s wild blood glucose fluctuations. We waited for continuous glucose monitoring, so we could know what we so desperately needed to know- where is my blood sugar going, right now. Stems cells have the potential to deliver what we all still so desperately want- relief from the 24/7/365 burden of thinking and acting like a beta cell. Stay tuned, T1D nation!


Nicholas B. Argento, MD, Diabetes Technology Director, Maryland Endocrine and Diabetes

Person with T1D since 1968

Thanks to Elizabeth M. Argento for her expert editorial assistance

  1. Many years ago in the Estado de México (that’s the state’s name) in the country of Mexico there was a physician that became popular because he was transplanting cells from the pancreas of pigs to a type 2 diabetes patients and people treated that way reported healing needless to say he lost his medical license 😔

  2. Avatar

    Very important and updated information

  3. Avatar

    I had no idea that it is now possible to transplant insulin-producing cells via stem cell therapy. Stem cell therapy continues to advance with each and every year, and it has obvious benefits. My cousin has diabetes, so I’ll be sure to share this blog with him in order to convey stem cell therapy as an option.

  4. Avatar

    Is Stem cell treatment now in the market and available in Europe for diabetes for diabetes type 1?

  5. Avatar

    When will this be ready in the us

    • Hi Susan,
      Unfortunately it’s still a long way from the possibility of having an effect in humans. 5-10 years (closer to 10) if at all. It’s a tough area of research.

  6. Avatar

    My son, 212 was recently diagnosed with T1D. In addition to the work being done with stem cells, one would have to wonder what triggered the pancreas to turn off? Perhaps there is a gene therapy that should be investigated. Is there a company out there that is pursuing this line of therapy?

    • There are lots of scams out there, but stem cell research at reputable universities is ongoing. My advice to anyone newly diagnosed with T1D is to get a CGM…that is the first step. Then it will be the artificial pancreas, which is coming soon.

      • Avatar

        The AP technology has been out there for ages. I am wondering why it’s taking these companies SO long to produce their products? The Omni pod is the oldest technology out there and hoping we can soon use it with current info to do it own our own.
        Stem cell I was thinking is our only hope. I’d love to read more on the current studies. It works in mice but not tested on humans?

  7. Avatar

    Hi my son was diagnosed with type 1 will there be a cure soon.?
    Or a artificial pancreas?

  8. Avatar

    My name is Lynda and I have had Diabetes Sense I was 9 years old is there anything yet like and Artificial pancreas that I would be able to get Instead of having to do needles so that I can live a happy life

  9. Avatar

    You said it so well: “what we all still so desperately want – relief from the 24/7/365 burden of thinking and acting like a beta cell.” Most people have no idea what we go through. I’ve been doing it for over 33 years. The CGM really helps; fast acting insulin really helps. But it is all such a burden. It’s like caring for a baby every day and night of your life with none of the joy babies can bring.

    When I was diagnosed 33 years ago I was told a virus was suspected of destroying my beta cells. Now, medical medium Anthony William tells us it is the Epstein-Barr virus and not our own immune system. And, that if we don’t feed the virus what it likes to eat, it won’t thrive. I realize his information does not come from science, but I trust his source and have found his recommendations to be incredibly healthful for me. I wonder if any scientists out there are questioning the underlying premise that Type 1 diabetes is an auto-immune disease. If the EB virus can be starved by denying the foods it thrives on, perhaps new beta cells from stem cells could actually survive and do their work.

  10. Avatar

    i am from ahmedabad .i have cusion one who have diabetes type 1 and she is only 2 year old….so is any perminite solution.

    • Avatar

      Right now there is no cure for type 1 diabetes, but there are a lot of good treatment options. One of the best ways to manage type 1 is with continuous glucose monitoring (CGM). The Dexcom G6 is approved for use in children as young as 2 years old, and Abbott’s FreeStyle Libre is approved for kids 4 and up. Many more technology improvements are on the way and organizations like JDRF are working hard to find a cure.

  11. Avatar

    Thank you for the information. My son has type one diabetes and I pray for the day he is not a slave to insulin and living the roller coaster life of diabetes!

Leave a Reply